machine learning (Tinysoul.ai | deAI Internet of Models) from NUrislam's blog

What is machine learning?

Machine learning (ML) is a type of artificial intelligence (AI) that allows software applications to become more accurate at predicting outcomes without being explicitly programmed to do so. Machine learning algorithms use historical data as input to predict new output values.

Recommendation engines are a common use case for machine learning. Other popular uses include fraud detection, spam filtering, malware threat detection, business process automation (BPA) and Predictive maintenance. For more at Tinysoul



 

Why is machine learning important?

Machine learning is important because it gives enterprises a view of trends in customer behavior and business operational patterns, as well as supports the development of new products. Many of today's leading companies, such as Facebook, Google and Uber, make machine learning a central part of their operations. Machine learning has become a significant competitive differentiator for many companies.

What are the different types of machine learning?

Classical machine learning is often categorized by how an algorithm learns to become more accurate in its predictions. There are four basic approaches:supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning. The type of algorithm data scientists choose to use depends on what type of data they want to predict.

  • Supervised learning: In this type of machine learning, data scientists supply algorithms with labeled training data and define the variables they want the algorithm to assess for correlations. Both the input and the output of the algorithm is specified.
  • Unsupervised learning: This type of machine learning involves algorithms that train on unlabeled data. The algorithm scans through data sets looking for any meaningful connection. The data that algorithms train on as well as the predictions or recommendations they output are predetermined.
  • Semi-supervised learning: This approach to machine learning involves a mix of the two preceding types. Data scientists may feed an algorithm mostly labeled training data, but the model is free to explore the data on its own and develop its own understanding of the data set.
  • Reinforcement learning: Data scientists typically use reinforcement learning to teach a machine to complete a multi-step process for which there are clearly defined rules. Data scientists program an algorithm to complete a task and give it positive or negative cues as it works out how to complete a task. But for the most part, the algorithm decides on its own what steps to take along the way.
How does supervised machine learning work?

Supervised machine learning requires the data scientist to train the algorithm with both labeled inputs and desired outputs. Supervised learning algorithms are good for the following tasks:

  • Binary classification: Dividing data into two categories.
  • Multi-class classification: Choosing between more than two types of answers.
  • Regression modeling: Predicting continuous values.
  • Ensembling: Combining the predictions of multiple machine learning models to produce an accurate prediction.
How does unsupervised machine learning work?

Unsupervised machine learning algorithms do not require data to be labeled. They sift through unlabeled data to look for patterns that can be used to group data points into subsets. Most types of deep learning, including neural networks, are unsupervised algorithms. Unsupervised learning algorithms are good for the following tasks:

  • Clustering: Splitting the dataset into groups based on similarity.
  • Anomaly detection: Identifying unusual data points in a data set.
  • Association mining: Identifying sets of items in a data set that frequently occur together.
  • Dimensionality reduction: Reducing the number of variables in a data set.
Who's using machine learning and what's it used for?

Today, machine learning is used in a wide range of applications. Perhaps one of the most well-known examples of machine learning in action is the recommendation engine that powers Facebook's news feed. For more at machine learning

Facebook uses machine learning to personalize how each member's feed is delivered. If a member frequently stops to read a particular group's posts, the recommendation engine will start to show more of that group's activity earlier in the feed.

Behind the scenes, the engine is attempting to reinforce known patterns in the member's online behavior. Should the member change patterns and fail to read posts from that group in the coming weeks, the news feed will adjust accordingly.

In addition to recommendation engines, other uses for machine learning include the following:

  • Customer relationship management. CRM software can use machine learning models to analyze email and prompt sales team members to respond to the most important messages first. More advanced systems can even recommend potentially effective responses.
  • Business intelligence. BI and analytics vendors use machine learning in their software to identify potentially important data points, patterns of data points and anomalies.
  • Human resource information systems. HRIS systems can use machine learning models to filter through applications and identify the best candidates for an open position.
  • Self-driving cars. Machine learning algorithms can even make it possible for a semi-autonomous car to recognize a partially visible object and alert the driver.
  • Virtual assistants. Smart assistants typically combine supervised and unsupervised machine learning models to interpret natural speech and supply context.

ai crypto

AI coins are cryptos that use artificial intelligence to improve the user experience, scalability, and security of blockchain networks. For more at ai crypto .Crypto AI coins support AI projects like decentralised marketplaces, market predictions, and portfolio management. AI-powered tokens can also give governance rights to their holders and for transactions. AI can be trained to spot illicit activities, market trends, investment opportunities, and other applications.


Previous post     
     Next post
     Blog home

The Wall

No comments
You need to sign in to comment